论文标题

从基于潜在运动矩阵的图像序列中学习生成运动模型

Learning a Generative Motion Model from Image Sequences based on a Latent Motion Matrix

论文作者

Krebs, Julian, Delingette, Hervé, Ayache, Nicholas, Mansi, Tommaso

论文摘要

我们建议从一系列图像中学习一个概率运动模型,以进行时空登记。我们的模型在低维概率空间(运动矩阵)中编码运动,该运动可以实现各种运动分析任务,例如仿真和插值现实运动模式,从而可以更快地获取数据获取和数据增强。更确切地说,运动矩阵允许将回收的运动从一个受试者传输到另一个模拟的一个模拟,例如健康受试者中的病理运动而无需进行受试者间注册。该方法基于有条件的潜在变量模型,该模型是使用摊销变异推理训练的。这种无监督的生成模型遵循了一个新型的多元高斯过程,并应用于时间卷积网络中,该网络导致差异运动模型。通过应用时间辍学训练方案,可以进一步提高时间一致性和推广性。与三种最先进的注册算法相比,应用于心脏Cine-MRI序列,显示出提高的注册精度和时空更光滑的变形。此外,与线性和立方插值相比,我们通过改进的序列序列进行了改进的运动重建,证明了该模型用于运动分析,模拟和超分辨率。

We propose to learn a probabilistic motion model from a sequence of images for spatio-temporal registration. Our model encodes motion in a low-dimensional probabilistic space - the motion matrix - which enables various motion analysis tasks such as simulation and interpolation of realistic motion patterns allowing for faster data acquisition and data augmentation. More precisely, the motion matrix allows to transport the recovered motion from one subject to another simulating for example a pathological motion in a healthy subject without the need for inter-subject registration. The method is based on a conditional latent variable model that is trained using amortized variational inference. This unsupervised generative model follows a novel multivariate Gaussian process prior and is applied within a temporal convolutional network which leads to a diffeomorphic motion model. Temporal consistency and generalizability is further improved by applying a temporal dropout training scheme. Applied to cardiac cine-MRI sequences, we show improved registration accuracy and spatio-temporally smoother deformations compared to three state-of-the-art registration algorithms. Besides, we demonstrate the model's applicability for motion analysis, simulation and super-resolution by an improved motion reconstruction from sequences with missing frames compared to linear and cubic interpolation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源