论文标题

针对心理健康病例对照研究的贝叶斯分层模型规范的建议

Recommendations for Bayesian hierarchical model specifications for case-control studies in mental health

论文作者

Valton, Vincent, Wise, Toby, Robinson, Oliver J.

论文摘要

层次模型拟合已成为对心理健康认知和行为的病例对照研究的司空见惯。但是,这些技术要求我们在小组级别上正式化有关数据生成过程的假设,这可能尚不清楚。具体来说,研究人员通常必须选择是否假设所有受试者都是从共同人群中汲取的,还是将其模拟为来自单独的人群。这些假设对计算精神病学有深远的影响,因为它们会影响所得的推论(潜在参数恢复),并且可能会混合或掩盖真实的群体级别差异。为了测试这些假设,我们从常用的多武器匪徒任务(增强学习任务)中进行了系统模拟。然后,我们检查了两个常用的生成建模假设下的潜在参数空间中的群体差异的恢复:(1)在共同共享的组级先验下建模组(假设所有参与者都是从共同分布中产生的,并且很可能共享共同特征); (2)基于症状或诊断标签对单独的组进行建模,从而产生单独的小组级先验。我们评估了这些方法的鲁棒性,以在各种指标上的数据质量变化和先前的规格变化。我们发现分别拟合组(假设2)在所有条件下提供了最准确,最鲁棒的推断。我们的结果表明,在处理来自多个临床组的数据时,研究人员应分别分析患者和对照组,因为它提供了最准确,最强大的感兴趣参数。

Hierarchical model fitting has become commonplace for case-control studies of cognition and behaviour in mental health. However, these techniques require us to formalise assumptions about the data-generating process at the group level, which may not be known. Specifically, researchers typically must choose whether to assume all subjects are drawn from a common population, or to model them as deriving from separate populations. These assumptions have profound implications for computational psychiatry, as they affect the resulting inference (latent parameter recovery) and may conflate or mask true group-level differences. To test these assumptions we ran systematic simulations on synthetic multi-group behavioural data from a commonly used multi-armed bandit task (reinforcement learning task). We then examined recovery of group differences in latent parameter space under the two commonly used generative modelling assumptions: (1) modelling groups under a common shared group-level prior (assuming all participants are generated from a common distribution, and are likely to share common characteristics); (2) modelling separate groups based on symptomatology or diagnostic labels, resulting in separate group-level priors. We evaluated the robustness of these approaches to variations in data quality and prior specifications on a variety of metrics. We found that fitting groups separately (assumptions 2), provided the most accurate and robust inference across all conditions. Our results suggest that when dealing with data from multiple clinical groups, researchers should analyse patient and control groups separately as it provides the most accurate and robust recovery of the parameters of interest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源