论文标题
一类普遍稳定且无维的T-RPMD集成符
A generalized class of strongly stable and dimension-free T-RPMD integrators
论文作者
论文摘要
最近的工作表明,强稳定性和维度自由对于恒温恒温器环聚合物分子动力学(T-RPMD)和途径 - 集成分子动力学(PIMD)的稳健数值整合至关重要,没有标准积分剂表现出非癌化性和其他病理学[J. J.化学物理。 151,124103(2019); J. Chem。物理。 152,104102(2020)]。特别是,通过标准BAOAB方案的Cayley修改获得的BCOCB方案具有简单的自由环聚合物子步骤的重新训练,赋予了强稳定性和尺寸自由度,并已证明可以在具有较大时间步骤的凝结相系统中产生出色的数值准确性。在这里,我们介绍了更广泛的T-RPMD数值集成符,这些集成符表现出强大的稳定性和维度自由度,而与Ornstein-Uhlenbeck摩擦计划无关。除了考虑到以前的工作中考虑平衡精度和时步稳定性外,我们还根据集成剂的收敛速率评估了均衡的速度及其在评估均衡期望值时的效率。在广义类中,我们发现BCOCB在各种构型依赖性可观测值的准确性和效率方面表现出色,尽管广义类中的其他积分器对速度依赖性量的表现更好。广泛的数值证据表明,既定性能保证了强烈的液态水案例。分析结果和数值结果都表明,在实际应用的时间步中,BCOCB在准确性,效率和稳定性方面都在其他已知的集成符上脱颖而出。
Recent work shows that strong stability and dimensionality freedom are essential for robust numerical integration of thermostatted ring-polymer molecular dynamics (T-RPMD) and path-integral molecular dynamics (PIMD), without which standard integrators exhibit non-ergodicity and other pathologies [J. Chem. Phys. 151, 124103 (2019); J. Chem. Phys. 152, 104102 (2020)]. In particular, the BCOCB scheme, obtained via Cayley modification of the standard BAOAB scheme, features a simple reparametrization of the free ring-polymer sub-step that confers strong stability and dimensionality freedom and has been shown to yield excellent numerical accuracy in condensed-phase systems with large time-steps. Here, we introduce a broader class of T-RPMD numerical integrators that exhibit strong stability and dimensionality freedom, irrespective of the Ornstein-Uhlenbeck friction schedule. In addition to considering equilibrium accuracy and time-step stability as in previous work, we evaluate the integrators on the basis of their rates of convergence to equilibrium and their efficiency at evaluating equilibrium expectation values. Within the generalized class, we find BCOCB to be superior with respect to accuracy and efficiency for various configuration-dependent observables, although other integrators within the generalized class perform better for velocity-dependent quantities. Extensive numerical evidence indicates that the stated performance guarantees hold for the strongly anharmonic case of liquid water. Both analytical and numerical results indicate that BCOCB excels over other known integrators in terms of accuracy, efficiency, and stability with respect to time-step for practical applications.