论文标题

3D-LANENET+:使用半局部表示的无锚式车道检测

3D-LaneNet+: Anchor Free Lane Detection using a Semi-Local Representation

论文作者

Efrat, Netalee, Bluvstein, Max, Oron, Shaul, Levi, Dan, Garnett, Noa, Shlomo, Bat El

论文摘要

3D-LANENET+是一种基于摄像机的DNN方法,用于锚定3D车道检测,能够检测任何任意拓扑的3D车道,例如分裂,合并以及短和垂直泳道。我们遵循最近提出的3D-LANENET,并将其扩展以实现这些先前不支持的车道拓扑结构。我们的输出表示形式是无锚的半本地瓷砖表示形式,将车道分解为可以学习参数的简单泳道段。此外,我们了解到,根据车道实例,还具有嵌入本地检测到的段全局连通性形成完整3D车道的原因。这种组合允许3D-LANENET+如原始的3D-LANENEN中的车道锚,非最大抑制和车道模型拟合。我们使用合成和现实世界数据证明了3D-LANENET+的功效。结果表明,相对于原始的3D-LANENET的显着改善,这可以归因于对复杂车道拓扑,曲线和表面几何形状的更好概括。

3D-LaneNet+ is a camera-based DNN method for anchor free 3D lane detection which is able to detect 3d lanes of any arbitrary topology such as splits, merges, as well as short and perpendicular lanes. We follow recently proposed 3D-LaneNet, and extend it to enable the detection of these previously unsupported lane topologies. Our output representation is an anchor free, semi-local tile representation that breaks down lanes into simple lane segments whose parameters can be learnt. In addition we learn, per lane instance, feature embedding that reasons for the global connectivity of locally detected segments to form full 3d lanes. This combination allows 3D-LaneNet+ to avoid using lane anchors, non-maximum suppression, and lane model fitting as in the original 3D-LaneNet. We demonstrate the efficacy of 3D-LaneNet+ using both synthetic and real world data. Results show significant improvement relative to the original 3D-LaneNet that can be attributed to better generalization to complex lane topologies, curvatures and surface geometries.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源