论文标题
对广义群体转移的内态家庭的阴影
Shadowing for families of endomorphisms of generalized group shifts
论文作者
论文摘要
让$ g $成为可计数的单体,让$ a $为Artinian集团(分别是Artinian模块)。令$σ\ subset a^g $为封闭的subshift,也是$ a^g $的子组(supp。Aspodule)。假设$γ$是一种有限生成的单体,由成对通勤的细胞自动机$σ\至σ$组成,它们也是组(模块的分子式)的同态同态,并具有由地图组成给出的单差二进制操作。我们表明,$σ$ $γ$的估值动作满足了自然的内在阴影属性。还为可允许的群体换档的内态性家庭建立了概括。
Let $G$ be a countable monoid and let $A$ be an Artinian group (resp. an Artinian module). Let $Σ\subset A^G$ be a closed subshift which is also a subgroup (resp. a submodule) of $A^G$. Suppose that $Γ$ is a finitely generated monoid consisting of pairwise commuting cellular automata $Σ\to Σ$ that are also homomorphisms of groups (resp. homomorphisms of modules) with monoid binary operation given by composition of maps. We show that the valuation action of $Γ$ on $Σ$ satisfies a natural intrinsic shadowing property. Generalizations are also established for families of endomorphisms of admissible group subshifts.