论文标题

航空机器学习问题的自动编码功能

Autoencoding Features for Aviation Machine Learning Problems

论文作者

Wang, Liya, Lucic, Panta, Campbell, Keith, Wanke, Craig

论文摘要

当前的高维和异质航空航空数据手动处理功能的实践是劳动密集型,无法很好地扩展到新问题,并且容易丢失信息,从而影响机器学习(ML)程序的有效性和可维护性。这项研究探索了一种无监督的学习方法自动编码器,以提取航空机器学习问题的有效功能。该研究探索了自动编码器的变体,目的是迫使输入的学习表示形式,以假定有用的属性。开发了飞行轨道异常检测自动编码器,以证明该技术的多功能性。研究结果表明,自动编码器不仅可以自动为飞行轨道数据提取有效的功能,还可以有效地清洁数据,从而减少数据科学家的工作量。此外,该研究利用了转移学习来有效地培训多个机场的模型。转移学习可以将模型培训时间从几天减少到数小时,并改善模型性能。开发的应用和技术与整个航空界共享,以提高正在进行的机器学习研究的有效性。

The current practice of manually processing features for high-dimensional and heterogeneous aviation data is labor-intensive, does not scale well to new problems, and is prone to information loss, affecting the effectiveness and maintainability of machine learning (ML) procedures. This research explored an unsupervised learning method, autoencoder, to extract effective features for aviation machine learning problems. The study explored variants of autoencoders with the aim of forcing the learned representations of the input to assume useful properties. A flight track anomaly detection autoencoder was developed to demonstrate the versatility of the technique. The research results show that the autoencoder can not only automatically extract effective features for the flight track data, but also efficiently deep clean data, thereby reducing the workload of data scientists. Moreover, the research leveraged transfer learning to efficiently train models for multiple airports. Transfer learning can reduce model training times from days to hours, as well as improving model performance. The developed applications and techniques are shared with the whole aviation community to improve effectiveness of ongoing and future machine learning studies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源