论文标题

西蒙的Opuc Hausdorff Dimension猜想

Simon's OPUC Hausdorff Dimension Conjecture

论文作者

Damanik, David, Guo, Shuzheng, Ong, Darren C.

论文摘要

我们表明,与Verblunsky系数相关的Szegő矩阵$ \ {α_n\} _ {n \ in \ Mathbb {z} _+} $ obeying $ \ sum_ { $ z \ in \ partial \ mathbb {d} $外部一组Hausdorff尺寸不超过$1-γ$。特别是,单位圆上相关概率度量的单数部分由一组Hausdorff尺寸支撑不超过$1-γ$。这证明了Barry Simon从2005年开始的Opuc Hausdorff维度。

We show that the Szegő matrices, associated with Verblunsky coefficients $\{α_n\}_{n\in\mathbb{Z}_+}$ obeying $\sum_{n = 0}^\infty n^γ|α_n|^2 < \infty$ for some $γ\in (0,1)$, are bounded for values $z \in \partial \mathbb{D}$ outside a set of Hausdorff dimension no more than $1 - γ$. In particular, the singular part of the associated probability measure on the unit circle is supported by a set of Hausdorff dimension no more than $1-γ$. This proves the OPUC Hausdorff dimension conjecture of Barry Simon from 2005.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源