论文标题

带有双线性预测的参数有效的深神经网络

Parameter Efficient Deep Neural Networks with Bilinear Projections

论文作者

Yu, Litao, Gao, Yongsheng, Zhou, Jun, Zhang, Jian

论文摘要

对深神经网络(DNN)的最新研究主要集中在提高模型的准确性上。考虑到适当的深度学习框架,通常可以增加深度或层宽度以达到更高水平的准确性。但是,大量的模型参数施加了更多的计算和内存使用开销,并导致参数冗余。在本文中,我们通过用双线性预测替换传统的完整预测来解决DNN中的参数冗余问题。对于具有$ D $输入节点和$ D $输出节点的完全连接的层,应用双线性投影可以将模型空间复杂性从$ \ Mathcal {o}(d^2)$减少到$ \ Mathcal {o}(O}(2d)$,从而获得了具有次级线性层大小的深层模型。但是,与完整投影相比,结构化投影具有较低的学位自由度,从而导致拟合问题不足。因此,我们只需通过增加输出通道的数量来扩展映射大小,从而可以保持甚至提高模型的准确性。这使得在具有内存限制的移动系统上部署这样的深层模型非常有效且方便。四个基准数据集的实验表明,将所提出的双线性投影应用于深神经网络可以达到比常规全DNN更高的精度,而大大降低了模型大小。

Recent research on deep neural networks (DNNs) has primarily focused on improving the model accuracy. Given a proper deep learning framework, it is generally possible to increase the depth or layer width to achieve a higher level of accuracy. However, the huge number of model parameters imposes more computational and memory usage overhead and leads to the parameter redundancy. In this paper, we address the parameter redundancy problem in DNNs by replacing conventional full projections with bilinear projections. For a fully-connected layer with $D$ input nodes and $D$ output nodes, applying bilinear projection can reduce the model space complexity from $\mathcal{O}(D^2)$ to $\mathcal{O}(2D)$, achieving a deep model with a sub-linear layer size. However, structured projection has a lower freedom of degree compared to the full projection, causing the under-fitting problem. So we simply scale up the mapping size by increasing the number of output channels, which can keep and even boosts the model accuracy. This makes it very parameter-efficient and handy to deploy such deep models on mobile systems with memory limitations. Experiments on four benchmark datasets show that applying the proposed bilinear projection to deep neural networks can achieve even higher accuracies than conventional full DNNs, while significantly reduces the model size.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源