论文标题

正交规则对麦克斯韦变异问题有限元解决方案的影响。与直元素和弯曲元件的网格的一致性估计

The effect of quadrature rules on finite element solutions of Maxwell variational problems. Consistency estimates on meshes with straight and curved elements

论文作者

Aylwin, Rubén, Jerez-Hanckes, Carlos

论文摘要

我们研究数值正交规则对通过卷曲构造或边缘有限元法解决麦克斯韦型变异问题时的数值正交规则对误差收敛率的影响。提供了具有非均匀系数的有界多边形和弯曲域的情况的完整{\ em先验}误差分析。我们详细介绍了有关正交规则的网状细化和精度的足够条件,以确保递归速度的融合率。在弯曲域上,我们将误差贡献分离为数值正交规则。

We study the effects of numerical quadrature rules on error convergence rates when solving Maxwell-type variational problems via the curl-conforming or edge finite element method. A complete {\em a priori} error analysis for the case of bounded polygonal and curved domains with non-homogeneous coefficients is provided. We detail sufficient conditions with respect to mesh refinement and precision for the quadrature rules so as to guarantee convergence rates following that of exact numerical integration. On curved domains, we isolate the error contribution to numerical quadrature rules.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源