论文标题

使用近似贝叶斯计算的票价的参数估计

Parameter Estimation for RANS Models Using Approximate Bayesian Computation

论文作者

Doronina, Olga A., Murman, Scott M., Hamlington, Peter E.

论文摘要

我们使用近似的贝叶斯计算(ABC)来估计雷诺平均纳维尔 - 斯托克斯(RANS)模拟湍流中的未知参数值及其不确定性。 ABC方法近似于模型参数的后验分布,但不需要可能的直接计算或估计。与完整的贝叶斯分析相比,ABC为复杂模型和广泛的参考文献提供了更快,更灵活的参数估计。在本文中,我们描述了ABC方法,包括使用校准步骤,适应性建议和马尔可夫链蒙特卡洛(MCMC)技术来加速参数估计,从而改善了ABC方法,并表示ABC-IMCMC。作为对经典ABC排斥算法的测试,我们使用来自定期剪切均匀均匀湍流的直接数值模拟的参考数据估算了非平衡模型中的参数。然后,我们证明了使用ABC-IMCMC在Menter剪切应力转移(SST)模型中使用实验参考数据估算参数的参数。我们表明,可以使用ABC-IMCMC提高SST模型的精度,这表明ABC-IMCMC是使用广泛参考数据校准模型的有前途的方法。

We use approximate Bayesian computation (ABC) to estimate unknown parameter values, as well as their uncertainties, in Reynolds-averaged Navier-Stokes (RANS) simulations of turbulent flows. The ABC method approximates posterior distributions of model parameters, but does not require the direct computation, or estimation, of a likelihood function. Compared to full Bayesian analyses, ABC thus provides a faster and more flexible parameter estimation for complex models and a wide range of reference data. In this paper, we describe the ABC approach, including the use of a calibration step, adaptive proposal, and Markov chain Monte Carlo (MCMC) technique to accelerate the parameter estimation, resulting in an improved ABC approach, denoted ABC-IMCMC. As a test of the classic ABC rejection algorithm, we estimate parameters in a nonequilibrium RANS model using reference data from direct numerical simulations of periodically sheared homogeneous turbulence. We then demonstrate the use of ABC-IMCMC to estimate parameters in the Menter shear-stress-transport (SST) model using experimental reference data for an axisymmetric transonic bump. We show that the accuracy of the SST model for this test case can be improved using ABC-IMCMC, indicating that ABC-IMCMC is a promising method for the calibration of RANS models using a wide range of reference data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源