论文标题

对粗粒模型中记忆项的系统分析:马尔可夫近似的情况

A Systematic Analysis of the Memory term in Coarse-Grained models: the case of the Markovian Approximation

论文作者

Di Pasquale, N., Hudson, T., Icardi, M., Rovigatti, L., Spinaci, M.

论文摘要

通过Mori-Zwanzig投影仪运算符形式主义的粗粒(CG)模型的系统开发需要对几个术语进行明确描述,包括确定性漂移项,耗散记忆项和随机波动项。在许多应用中,记忆和波动项是通过波动散落关系相关的,通常比漂移期更具挑战性。在这项工作中,我们分析了记忆项的近似值,并为数据驱动的方法提出了合理的基础,以实现记忆和波动项的近似值,这些术语可被认为包括在马尔可夫阶层中。

The systematic development of Coarse-Grained (CG) models via the Mori-Zwanzig projector operator formalism requires the explicit description of several terms, including a deterministic drift term, a dissipative memory term and a random fluctuation term. In many applications, the memory and fluctuation terms are related by the fluctuation-dissipation relation and are, in general, more challenging to derive than the drift term. In this work we analyse an approximation of the memory term and propose a rational basis for a data-driven approach to an approximation of the memory and fluctuating terms which can be considered included in the class of the Markovian ones.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源