论文标题

从专业和业余参与者收集和验证心理生理数据:多模式电子竞技数据集

Collection and Validation of Psychophysiological Data from Professional and Amateur Players: a Multimodal eSports Dataset

论文作者

Smerdov, Anton, Zhou, Bo, Lukowicz, Paul, Somov, Andrey

论文摘要

在电子竞技中进行适当的培训和分析需要准确收集和注释数据。大多数电子竞技研究专门侧重于游戏中的数据分析,并且缺乏涉及电子竞技运动员心理生理数据的工作。在本文中,我们介绍了一个数据集,该数据集是从专业和业余团队中收集的22场英雄联盟视频游戏中的数据集,录制了40多个小时。记录的数据包括玩家的生理活动,例如从各种传感器中获得的运动,脉搏,扫视,自我报告的后匹配调查以及游戏中数据。数据集的一个重要特征是从五个播放器中同时收集数据,这有助于在团队级别上分析传感器数据。在收集数据集时,我们进行了验证。特别是,我们证明了专业参与者的压力和集中度较小,这意味着更独立的游戏风格。另外,我们表明,缺乏团队沟通不会像业余球员那样影响专业球员。为了调查数据集的其他可能的用例,我们使用了3分钟的传感器数据会话训练了经典的机器学习算法,用于技能预测和播放器重新识别。最佳模型分别在技能预测和播放器重新ID问题的验证集上达到了0.856和0.521(机会水平为0.10)。该数据集可从https://github.com/smerdov/esports传感器数据集获得。

Proper training and analytics in eSports require accurately collected and annotated data. Most eSports research focuses exclusively on in-game data analysis, and there is a lack of prior work involving eSports athletes' psychophysiological data. In this paper, we present a dataset collected from professional and amateur teams in 22 matches in League of Legends video game with more than 40 hours of recordings. Recorded data include the players' physiological activity, e.g. movements, pulse, saccades, obtained from various sensors, self-reported aftermatch survey, and in-game data. An important feature of the dataset is simultaneous data collection from five players, which facilitates the analysis of sensor data on a team level. Upon the collection of dataset we carried out its validation. In particular, we demonstrate that stress and concentration levels for professional players are less correlated, meaning more independent playstyle. Also, we show that the absence of team communication does not affect the professional players as much as amateur ones. To investigate other possible use cases of the dataset, we have trained classical machine learning algorithms for skill prediction and player re-identification using 3-minute sessions of sensor data. Best models achieved 0.856 and 0.521 (0.10 for a chance level) accuracy scores on a validation set for skill prediction and player re-id problems, respectively. The dataset is available at https://github.com/smerdov/eSports Sensors Dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源