论文标题
深度成对散列以进行冷启动推荐
Deep Pairwise Hashing for Cold-start Recommendation
论文作者
论文摘要
建议效率和数据稀疏问题被认为是提高在线建议性能的两个挑战。以前的大多数相关工作都集中在提高建议准确性而不是效率上。在本文中,我们提出了一个深层的成对散列(DPH),以将用户和项目映射到锤式空间中的二进制向量,在此,用户对项目的偏好可以通过锤距离有效地计算出来,从而大大提高了在线建议的效率。为了减轻数据稀疏性和寒冷启动问题,用户项目交互信息和项目内容信息统一以了解项目和用户的有效表示。具体而言,我们首先通过将自动编码器而不是其他确定性的深度学习框架来从项目内容数据中预先训练鲁棒的项目表示。然后,我们通过添加具有离散约束的成对损失目标来确定整个框架;此外,DPH的目的是最大程度地减少与建议的最终目标一致的成对排名损失。最后,我们采用交替优化方法来优化具有离散约束的建议模型。在三个不同数据集上进行的广泛实验表明,DPH可以显着提高有关数据稀疏性和项目冷启动建议的最新框架。
Recommendation efficiency and data sparsity problems have been regarded as two challenges of improving performance for online recommendation. Most of the previous related work focus on improving recommendation accuracy instead of efficiency. In this paper, we propose a Deep Pairwise Hashing (DPH) to map users and items to binary vectors in Hamming space, where a user's preference for an item can be efficiently calculated by Hamming distance, which significantly improves the efficiency of online recommendation. To alleviate data sparsity and cold-start problems, the user-item interactive information and item content information are unified to learn effective representations of items and users. Specifically, we first pre-train robust item representation from item content data by a Denoising Auto-encoder instead of other deterministic deep learning frameworks; then we finetune the entire framework by adding a pairwise loss objective with discrete constraints; moreover, DPH aims to minimize a pairwise ranking loss that is consistent with the ultimate goal of recommendation. Finally, we adopt the alternating optimization method to optimize the proposed model with discrete constraints. Extensive experiments on three different datasets show that DPH can significantly advance the state-of-the-art frameworks regarding data sparsity and item cold-start recommendation.