论文标题
通过多模式暹罗神经网络预测脑变性
Predicting Brain Degeneration with a Multimodal Siamese Neural Network
论文作者
论文摘要
为了研究神经退行性疾病,对志愿者患者进行了纵向研究。在几个月到几年的时间范围内,他们进行了定期的医疗就诊,以获取不同模式的数据,例如生物样品,认知测试,结构和功能成像。这些变量是异质的,但它们都取决于患者的健康状况,这意味着所有方式之间可能存在未知的关系。某些信息可能特定于某些方式,而另一些信息可能是互补的,而另一些信息可能是多余的。一些数据也可能丢失。在这项工作中,我们提出了一种用于多模式学习的神经网络结构,能够从两个时间点使用成像和临床数据来预测神经退行性疾病的演变,并鲁棒对缺失值。我们的多模式网络在57名受试者的测试集中达到92.5 \%的准确性,AUC得分为0.978。与仅使用临床模式相比,我们还显示了多模式结构的优越性,用于测试集对象的临床测量值中最多37.5%。
To study neurodegenerative diseases, longitudinal studies are carried on volunteer patients. During a time span of several months to several years, they go through regular medical visits to acquire data from different modalities, such as biological samples, cognitive tests, structural and functional imaging. These variables are heterogeneous but they all depend on the patient's health condition, meaning that there are possibly unknown relationships between all modalities. Some information may be specific to some modalities, others may be complementary, and others may be redundant. Some data may also be missing. In this work we present a neural network architecture for multimodal learning, able to use imaging and clinical data from two time points to predict the evolution of a neurodegenerative disease, and robust to missing values. Our multimodal network achieves 92.5\% accuracy and an AUC score of 0.978 over a test set of 57 subjects. We also show the superiority of the multimodal architecture, for up to 37.5\% of missing values in test set subjects' clinical measurements, compared to a model using only the clinical modality.