论文标题

学习通用特征表示,并具有合成数据,可通过框架间距离损失进行弱监督的声音事件检测

Learning generic feature representation with synthetic data for weakly-supervised sound event detection by inter-frame distance loss

论文作者

Huang, Yuxin, Lin, Liwei, Wang, Xiangdong, Liu, Hong, Qian, Yueliang, Liu, Min, Ouchi, Kazushige

论文摘要

由于强烈标记的声音事件检测数据集的局限性,使用合成数据改善声音事件检测系统性能已成为新的研究重点。在本文中,我们尝试利用合成数据的使用来改善特征表示。基于公制学习,我们提出了针对域适应的框架间距离损耗函数,并证明了IT对声音事件检测的有效性。我们还使用合成数据应用了多任务学习。我们发现,当两种方法一起使用时,可以实现最佳性能。 Dcase 2018 Task 4测试集和Dcase 2019 Task 4合成集的实验均显示竞争成果。

Due to the limitation of strong-labeled sound event detection data set, using synthetic data to improve the sound event detection system performance has been a new research focus. In this paper, we try to exploit the usage of synthetic data to improve the feature representation. Based on metric learning, we proposed inter-frame distance loss function for domain adaptation, and prove the effectiveness of it on sound event detection. We also applied multi-task learning with synthetic data. We find the the best performance can be achieved when the two methods being used together. The experiment on DCASE 2018 task 4 test set and DCASE 2019 task 4 synthetic set both show competitive results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源