论文标题
构建多项式块方法
Constructing Polynomial Block Methods
论文作者
论文摘要
最近引入的多项式时间集成框架提出了一种新型的方式,通过在复杂的时间平面中使用插值多项式来构建时间积分器来求解一阶普通微分方程的系统。在这项工作中,我们继续通过引入多种类型的多项式来开发框架,并提出了具有假想节点的多项式块方法的一般构造策略。新的建筑策略不涉及代数秩序条件,而是由类似于用于构建传统空间有限差异的几何论证的动机。此外,新提出的方法解决了先前引入的多项式块方法的几个缺点,包括求解分散方程的能力以及当无法使用并行性时缺乏有效的序列方法。为了验证我们的新方法,我们进行了两个数值实验,将多项式块方法的性能与向后差异方法和隐式runge-kutta方案进行了比较。
The recently introduced polynomial time integration framework proposes a novel way to construct time integrators for solving systems of first-order ordinary differential equation by using interpolating polynomials in the complex time plane. In this work we continue to develop the framework by introducing several additional types of polynomials and proposing a general class of construction strategies for polynomial block methods with imaginary nodes. The new construction strategies do not involve algebraic order conditions and are instead motivated by geometric arguments similar to those used for constructing traditional spatial finite differences. Moreover, the newly proposed methods address several shortcomings of previously introduced polynomial block methods including the ability to solve dispersive equations and the lack of efficient serial methods when parallelism cannot be used. To validate our new methods, we conduct two numerical experiments that compare the performance of polynomial block methods against backward difference methods and implicit Runge-Kutta schemes.