论文标题

有限维的LOHE类型模型的运动常数,具有挫败感和应用于新兴动态

Constants of motion for the finite-dimensional Lohe type models with frustration and applications to emergent dynamics

论文作者

Ha, Seung-Yeal, Kim, Dohyun, Park, Hansol, Ryoo, Sang Woo

论文摘要

我们为有限维的LOHE类型聚集模型呈现运动常数,并将其应用于分析集体行为的出现。已提出了库拉马托模型的非亚伯式和高维概括,这是库拉莫托模型,这是同步的原型相模型。本文的目的是在(相互作用)挫败感的效果下研究这些模型的新兴集体动力学,这概括了库拉莫托模型中的相移挫败感。为此,我们介绍了运动的常数,即沿着所考虑的模型产生的流动产生的流量,从如此获得的低维动力学的角度来看,得出了有关库拉莫托和lohe球体模型的新兴渐近模式的几个结果。

We present constants of motion for the finite-dimensional Lohe type aggregation models with frustration and we apply them to analyze the emergence of collective behaviors. The Lohe type models have been proposed as possible non-abelian and higher-dimensional generalizations of the Kuramoto model, which is a prototype phase model for synchronization. The aim of this paper is to study the emergent collective dynamics of these models under the effect of (interaction) frustration, which generalizes phase-shift frustrations in the Kuramoto model. To this end, we present constants of motion, i.e., conserved quantities along the flow generated by the models under consideration, and, from the perspective of the low-dimensional dynamics thus so obtained, derive several results concerning the emergent asymptotic patterns of the Kuramoto and Lohe sphere models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源