论文标题

关于具有直线或准线性信号的广泛线性MMSE MIMO系统SINR的分布

On the Distribution of SINR for Widely Linear MMSE MIMO Systems with Rectilinear or Quasi-Rectilinear Signals

论文作者

Deng, Wei, Xia, Yili, Li, Zhe, Pei, Wenjiang

论文摘要

尽管广泛线性的最小平方误差(WLMMSE)接收器已成为多输入 - 多输出(MIMO)无线系统的吸引人选择,但仍缺少对其姿势 - 检测信号与互联级 - 噪声比率(SINR)的统计理解。为此,我们考虑了一个WLMMSE MIMO传输系统,其在不相关的瑞利褪色通道上具有直线或准直线性(QR)信号,并研究其SINR的统计特性,用于其任意天线配置,具有$ n_t $ transmit $ transmit transmit Antennas和$ n_r $。我们首先根据第二类的汇合超几何函数来得出SINR的分析概率密度函数(PDF),对于具有任意$ n_r $和$ n_t $和$ n_t = 2,3 $的WLMMSE MIMO系统。对于更一般的情况,在实践中,即$ n_t> 3 $,我们求助于生成函数,以在某些轻度条件下获得近似但封闭的pdf表格,如预期的那样,这种功能更像是高斯式的$ 2N_R-n_t $增加。所谓的PDF能够根据停电概率,符号错误率和多样性增益的关键洞察力,以封闭形式呈现。特别是,它的多样性增益和对传统LMMSE的增益的改善分别被明确量化为$ n_r-(n_t-1)/2 $和$(N_T-1)/2 $。最后,蒙特卡洛模拟支持分析。

Although the widely linear least mean square error (WLMMSE) receiver has been an appealing option for multiple-input-multiple-output (MIMO) wireless systems, a statistical understanding on its pose-detection signal-to-interference-plus-noise ratio (SINR) in detail is still missing. To this end, we consider a WLMMSE MIMO transmission system with rectilinear or quasi-rectilinear (QR) signals over the uncorrelated Rayleigh fading channel and investigate the statistical properties of its SINR for an arbitrary antenna configuration with $N_t$ transmit antennas and $N_r$ receive ones. We first derive an analytic probability density function (PDF) of the SINR in terms of the confluent hypergeometric function of the second kind, for WLMMSE MIMO systems with an arbitrary $N_r$ and $N_t=2, 3$. For a more general case in practice, i.e., $N_t>3$, we resort to the moment generating function to obtain an approximate but closed form PDF under some mild conditions, which, as expected, is more Gaussian-like as $2N_r-N_t$ increases. The so-derived PDFs are able to provide key insights into the WLMMSE MIMO receiver in terms of the outage probability, the symbol error rate, and the diversity gain, all presented in closed form. In particular, its diversity gain and the gain improvement over the conventional LMMSE one are explicitly quantified as $N_r-(N_t-1)/2$ and $(N_t-1)/2$, respectively. Finally, Monte Carlo simulations support the analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源