论文标题

有效地学习使用验证的神经网络的稳健四倍边界的控制策略

Efficient Learning of Control Policies for Robust Quadruped Bounding using Pretrained Neural Networks

论文作者

Wang, Zhicheng, Li, Anqiao, Zheng, Yixiao, Xie, Anhuan, Li, Zhibin, Wu, Jun, Zhu, Qiuguo

论文摘要

边界是谈判障碍的四足动力运动中的重要步态之一。作者提出了一种有效的方法,尽管动态身体运动的变化很大,但可以更有效地学习稳健的步态。作者首先根据基于常规模型的控制器操作的机器人的数据预先介绍了神经网络(NN),然后通过深钢筋学习(DRL)进一步优化了验证的NN。特别是,作者设计了一个考虑接触点和阶段的奖励功能,以实施步态对称性和周期性,从而改善了边界性能。基于NN的反馈控制器是在模拟中学习的,并成功地在实际四倍的机器人Jueying Mini上部署了。作者方法在室内和室外都呈现了各种环境。作者方法通过在不平坦的地形上的小型四足动物界限来显示有效的计算和良好的运动结果。

Bounding is one of the important gaits in quadrupedal locomotion for negotiating obstacles. The authors proposed an effective approach that can learn robust bounding gaits more efficiently despite its large variation in dynamic body movements. The authors first pretrained the neural network (NN) based on data from a robot operated by conventional model based controllers, and then further optimised the pretrained NN via deep reinforcement learning (DRL). In particular, the authors designed a reward function considering contact points and phases to enforce the gait symmetry and periodicity, which improved the bounding performance. The NN based feedback controller was learned in the simulation and directly deployed on the real quadruped robot Jueying Mini successfully. A variety of environments are presented both indoors and outdoors with the authors approach. The authors approach shows efficient computing and good locomotion results by the Jueying Mini quadrupedal robot bounding over uneven terrain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源