论文标题

游戏理论激活对动态网络上传播的流行病的影响

Impacts of Game-Theoretic Activation on Epidemic Spread over Dynamical Networks

论文作者

Hota, Ashish R., Sneh, Tanya, Gupta, Kavish

论文摘要

当节点选择以自私和分散的方式与他人互动时,我们研究了流行病在动态网络上的演变。具体而言,我们在活动驱动的网络的框架中分析了具有异质性淋巴结度和时间变化的激活速率的易感性反射感染反射(SAIR)流行,并得出了确切状态进化的个体和程度的平均均值近似值。然后,我们提出了一个游戏理论模型,其中节点使用当前状态信息作为反馈以战略方式选择其激活概率,并表征所提出的设置的定量响应平衡(QRE)。然后,我们考虑活动驱动的易感感染感染(SIS)流行模型,表征平衡激活概率并分析闭环的流行性进化。我们的数值结果为游戏理论激活下的流行进化提供了令人信服的见解。具体而言,对于SAIR流行,我们表明,在适当的条件下,流行病可以持续存在,因为感染比例的任何降低都被节点的活动率提高所抵消。对于SIS流行,我们表明,在存在地方性状态的政权中,如果感染损失足够高,则在游戏理论激活下,感染的比例可能会明显较小。

We investigate the evolution of epidemics over dynamical networks when nodes choose to interact with others in a selfish and decentralized manner. Specifically, we analyze the susceptible-asymptomatic-infected-recovered (SAIR) epidemic in the framework of activity-driven networks with heterogeneous node degrees and time-varying activation rates, and derive both individual and degree-based mean-field approximations of the exact state evolution. We then present a game-theoretic model where nodes choose their activation probabilities in a strategic manner using current state information as feedback, and characterize the quantal response equilibrium (QRE) of the proposed setting. We then consider the activity-driven susceptible-infected-susceptible (SIS) epidemic model, characterize equilibrium activation probabilities and analyze epidemic evolution in closed-loop. Our numerical results provide compelling insights into epidemic evolution under game-theoretic activation. Specifically, for the SAIR epidemic, we show that under suitable conditions, the epidemic can persist, as any decrease in infected proportion is counteracted by an increase in activity rates by the nodes. For the SIS epidemic, we show that in regimes where there is an endemic state, the infected proportion could be significantly smaller under game-theoretic activation if the loss upon infection is sufficiently high.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源