论文标题

一般区域上的套管超中断

Lasso hyperinterpolation over general regions

论文作者

An, Congpei, Wu, Hao-Ning

论文摘要

本文在一般区域(名为Lasso Hyperpolation)上开发了完全离散的软阈值多项式近似。此近似值是$ \ ell_1 $ regularized离散最小二乘在相同的超插值条件下的近似。拉索高等中断还使用高阶正交规则来近似给定连续函数的傅立叶系数相对于某些正统基础,然后通过在所有近似傅立叶系数上作用软阈值操作员来获得其系数。 LASSO HyperPolation不是离散的正交投影,而是处理嘈杂数据的有效工具。我们理论上分析了Lasso高中间座的连续和平滑功能。主要结果是双重的:Lasso超中间操作员的标准是独立于多项式程度的界限,这是由高中座继承的; $ l_2 $误导性频率的$ L_2 $误差限制小于噪声水平变大时的高度接口,这可以提高高度接口的鲁棒性。给出了在间隔,圆盘,球体和立方体上的Lasso超插值的显式结构和相应的数值示例。

This paper develops a fully discrete soft thresholding polynomial approximation over a general region, named Lasso hyperinterpolation. This approximation is an $\ell_1$-regularized discrete least squares approximation under the same conditions of hyperinterpolation. Lasso hyperinterpolation also uses a high-order quadrature rule to approximate the Fourier coefficients of a given continuous function with respect to some orthonormal basis, and then it obtains its coefficients by acting a soft threshold operator on all approximated Fourier coefficients. Lasso hyperinterpolation is not a discrete orthogonal projection, but it is an efficient tool to deal with noisy data. We theoretically analyze Lasso hyperinterpolation for continuous and smooth functions. The principal results are twofold: the norm of the Lasso hyperinterpolation operator is bounded independently of the polynomial degree, which is inherited from hyperinterpolation; and the $L_2$ error bound of Lasso hyperinterpolation is less than that of hyperinterpolation when the level of noise becomes large, which improves the robustness of hyperinterpolation. Explicit constructions and corresponding numerical examples of Lasso hyperinterpolation over intervals, discs, spheres, and cubes are given.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源