论文标题

基于监视的差异隐私机制,以抗查询渗透参数重复攻击

Monitoring-based Differential Privacy Mechanism Against Query-Flooding Parameter Duplication Attack

论文作者

Yan, Haonan, Li, Xiaoguang, Li, Hui, Li, Jiamin, Sun, Wenhai, Li, Fenghua

论文摘要

通过机器学习算法启用的公共智能服务很容易受到模型提取攻击的影响,这些攻击可以通过公共查询窃取学习模型的机密信息。尽管有一些保护选项,例如差异隐私(DP)和监视,被认为是减轻此攻击的有前途的技术,但我们仍然发现脆弱性持续存在。在本文中,我们提出了一种自适应查询参数重复(QPD)攻击。对手可以通过Black-Box访问来推断模型信息,并且没有任何模型参数或通过QPD进行培训数据的知识。我们还使用基于监视的DP(MDP)来制定一种防御策略,以实现这一新攻击。在MDP中,我们首先提出了一种新型的实时模型提取状态评估方案,称为Monitor,以评估模型的情况。然后,我们设计了一种指导差异隐私预算分配的方法,称为APBA。最后,所有具有MDP的基于DP的防御能力都可以根据Monitor的结果动态调整模型响应中添加的噪声量,并有效地捍卫QPD攻击。此外,我们彻底评估并比较了具有DP和监视保护的现实世界模型上的QPD攻击和MDP防御性能。

Public intelligent services enabled by machine learning algorithms are vulnerable to model extraction attacks that can steal confidential information of the learning models through public queries. Though there are some protection options such as differential privacy (DP) and monitoring, which are considered promising techniques to mitigate this attack, we still find that the vulnerability persists. In this paper, we propose an adaptive query-flooding parameter duplication (QPD) attack. The adversary can infer the model information with black-box access and no prior knowledge of any model parameters or training data via QPD. We also develop a defense strategy using DP called monitoring-based DP (MDP) against this new attack. In MDP, we first propose a novel real-time model extraction status assessment scheme called Monitor to evaluate the situation of the model. Then, we design a method to guide the differential privacy budget allocation called APBA adaptively. Finally, all DP-based defenses with MDP could dynamically adjust the amount of noise added in the model response according to the result from Monitor and effectively defends the QPD attack. Furthermore, we thoroughly evaluate and compare the QPD attack and MDP defense performance on real-world models with DP and monitoring protection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源