论文标题
使用多项式轨迹参数化的时间连续概率预测
Temporally-Continuous Probabilistic Prediction using Polynomial Trajectory Parameterization
论文作者
论文摘要
参与者的运动预测的常用表示是每个参与者在离散的未来时间点上为每个参与者提供的一系列路点(包括位置和方向)。尽管这种方法是简单且灵活的,但它可以表现出不切实际的高阶导数(例如加速度)和中间时间步骤的近似误差。为了解决这个问题,我们为基于多项式轨迹参数化的时间连续概率轨迹预测提出了一个简单而通用的表示。我们使用两个大型自动驾驶数据集评估了有关监督轨迹预测任务的建议表示。结果显示了逼真的高阶导数和在插值时间点上更好的准确性,以及推断噪声分布比轨迹的好处。基于现有的最新模型的广泛实验研究表明,相对于其他代表的方法在预测车辆,骑自行车的人和行人交通行为者的未来动作方面相对于其他表示的有效性。
A commonly-used representation for motion prediction of actors is a sequence of waypoints (comprising positions and orientations) for each actor at discrete future time-points. While this approach is simple and flexible, it can exhibit unrealistic higher-order derivatives (such as acceleration) and approximation errors at intermediate time steps. To address this issue we propose a simple and general representation for temporally continuous probabilistic trajectory prediction that is based on polynomial trajectory parameterization. We evaluate the proposed representation on supervised trajectory prediction tasks using two large self-driving data sets. The results show realistic higher-order derivatives and better accuracy at interpolated time-points, as well as the benefits of the inferred noise distributions over the trajectories. Extensive experimental studies based on existing state-of-the-art models demonstrate the effectiveness of the proposed approach relative to other representations in predicting the future motions of vehicle, bicyclist, and pedestrian traffic actors.