论文标题

用微型可穿戴设备进行电质量HBC的野外干扰表征和建模

In-The-Wild Interference Characterization and Modelling for Electro-Quasistatic-HBC with Miniaturized Wearables

论文作者

Mehrotra, Parikha, Yang, David, Weigand, Scott, Sen, Shreyas

论文摘要

人体交流(HBC)作为无线身体区域网络(WBAN)的替代方案的出现导致了小型,能节能,更安全的可穿戴设备,可植入体内和周围形成网络的设备。先前的研究声称,尽管HBC比WBAN相对安全,但是HBC在> 10MHz地区的电磁(EM)辐射性质使该信息易于窃听。此外,由于40-400MHz范围内的人体天线效应,身体可能会被人体拾取。另外,HBC的电质量(EQS)模式通过允许信号包含在体内,构成了掩盖10MHz区域中数据传输的有吸引力方法。但是,关于该区域中干扰机制和来源的知识存在差距(对于允许正确选择数据传输带的至关重要)。在本文中,解释了等式区域中的干扰耦合方式及其可能的来源。在实际情况下可穿戴的干扰是一个非平凡的问题,合适的测量等式HBC设置旨在通过使用具有小的地面平面的可穿戴尺寸的测量设置来重新创建它。首次提出了人类的生物物理干扰拾音器模型,并在不同的环境环境下使用可穿戴设备的干扰测量结果最高可达250kHz。

The emergence of Human Body Communication (HBC) as an alternative to wireless body area networks (WBAN) has led to the development of small sized, energy efficient and more secure wearable and implantable devices forming a network in and around the body. Previous studies claim that though HBC is comparatively more secure than WBAN, nevertheless, the electromagnetic (EM) radiative nature of HBC in >10MHz region makes the information susceptible to eavesdropping. Furthermore, interferences may be picked up by the body due to the human body antenna effect in the 40-400MHz range. Alternatively, electro-quasistatic (EQS) mode of HBC forms an attractive way for covert data transmission in the sub 10MHz region by allowing the signal to be contained within the body. However, there is a gap in the knowledge about the mechanism and sources of interference in this region (crucial in allowing for proper choice of data transmission band). In this paper, the interference coupling modality in the EQS region is explained along with its possible sources. Interferences seen by the wearable in the actual scenario is a non-trivial problem and a suitable measurement EQS HBC setup is designed to recreate it by employing a wearable sized measurement setup having a small ground plane. For the first time, a human biophysical interference pickup model is proposed and interference measurement results using a wearable device are presented up to 250kHz in different environmental settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源