论文标题
果实尺寸和位置估计的观点计划
Viewpoint Planning for Fruit Size and Position Estimation
论文作者
论文摘要
现代农业应用需要了解植物上水果的位置和大小。但是,叶子的闭塞通常会使获取此信息难以获得困难。我们提出了一种新颖的观点规划方法,该方法建立了带有贴标签区域(ROI)(即水果)的植物的植物。我们的方法使用此OCTREE来示例候选人,以增加水果区域周围的信息,并使用启发式效用函数评估它们,以考虑预期的信息增益。我们的系统自动在ROI靶向采样和勘探采样之间切换,该采样将根据估计的实用程序考虑一般的边界体素。当植物被RGB-D传感器充分覆盖时,我们的系统将ROI体素呈现并估计检测到的果实的位置和大小。我们在模拟场景中评估了我们的方法,并将结果估计与地面真相进行了比较。结果表明,我们的组合方法的表现优于一种未明确考虑ROI来生成观点的抽样方法,以发现的ROI单元的数量来产生观点。此外,我们通过在配备有RGB-D摄像头的机器人手臂上测试我们的框架来显示现实世界中的适用性,该机器人安装在辣椒瓶中的自动管道轨道上的手推车上。
Modern agricultural applications require knowledge about the position and size of fruits on plants. However, occlusions from leaves typically make obtaining this information difficult. We present a novel viewpoint planning approach that builds up an octree of plants with labeled regions of interest (ROIs), i.e., fruits. Our method uses this octree to sample viewpoint candidates that increase the information around the fruit regions and evaluates them using a heuristic utility function that takes into account the expected information gain. Our system automatically switches between ROI targeted sampling and exploration sampling, which considers general frontier voxels, depending on the estimated utility. When the plants have been sufficiently covered with the RGB-D sensor, our system clusters the ROI voxels and estimates the position and size of the detected fruits. We evaluated our approach in simulated scenarios and compared the resulting fruit estimations with the ground truth. The results demonstrate that our combined approach outperforms a sampling method that does not explicitly consider the ROIs to generate viewpoints in terms of the number of discovered ROI cells. Furthermore, we show the real-world applicability by testing our framework on a robotic arm equipped with an RGB-D camera installed on an automated pipe-rail trolley in a capsicum glasshouse.