论文标题

C-NET:生物医学图像分类的可靠卷积神经网络

C-Net: A Reliable Convolutional Neural Network for Biomedical Image Classification

论文作者

Barzekar, Hosein, Yu, Zeyun

论文摘要

在许多国家,癌症是死亡的主要原因。早期诊断在适当治疗这种使人衰弱的疾病中起着至关重要的作用。癌症类型的自动分类是一项具有挑战性的任务,因为病理学家必须检查大量的组织病理学图像以检测无限异常。在这项研究中,我们提出了一种新型的卷积神经网络(CNN)结构,该结构由称为C-NET的多个网络的串联组成,以对生物医学图像进行分类。该模型结合了多个CNN,包括外部,中间和内部。体系结构的前两个部分包含六个网络,这些网络用作特征提取器,以输入内部网络,以根据恶性和良性对图像进行分类。 C-NET用于在包括Breakhis和Osteosarcoma在内的两个公共数据集上进行组织病理学图像分类。为了评估性能,使用多个评估指标的可靠性测试了该模型。 C-NET模型在数据集的单个指标上的所有其他模型都优于数据集和实现零分类的所有模型。这种方法有可能扩展到其他分类任务,因为实验结果证明了利用广泛的评估指标。

Cancers are the leading cause of death in many countries. Early diagnosis plays a crucial role in having proper treatment for this debilitating disease. The automated classification of the type of cancer is a challenging task since pathologists must examine a huge number of histopathological images to detect infinitesimal abnormalities. In this study, we propose a novel convolutional neural network (CNN) architecture composed of a Concatenation of multiple Networks, called C-Net, to classify biomedical images. The model incorporates multiple CNNs including Outer, Middle, and Inner. The first two parts of the architecture contain six networks that serve as feature extractors to feed into the Inner network to classify the images in terms of malignancy and benignancy. The C-Net is applied for histopathological image classification on two public datasets, including BreakHis and Osteosarcoma. To evaluate the performance, the model is tested using several evaluation metrics for its reliability. The C-Net model outperforms all other models on the individual metrics for both datasets and achieves zero misclassification. This approach has the potential to be extended to additional classification tasks, as experimental results demonstrate utilizing extensive evaluation metrics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源