论文标题
关于由于准地理潮汐而具有任意未对准轨道和恒星角动量的二元系统的演变
On the evolution of a binary system with arbitrarily misaligned orbital and stellar angular momenta due to quasi-stationary tides
论文作者
论文摘要
我们考虑由于潮汐效应而相互作用的二元系统的演变,而无需限制轨道的方向,并且在显着的旋转角动量和轨道偏心的情况下。我们在平衡潮汐近似中的低潮汐强迫频率状态下工作。内部自由度已完全考虑到一个组成部分,即主要。在伴侣的情况下,假定旋转角动量足够小,可以被忽略,但是允许内部能量耗散,因为在行星同伴的情况下,这对于轨道圆而化可能很重要。我们获得了一组管理潮汐效应产生的轨道演变的方程。这些取决于二进制组分的质量和半径,轨道的形式和方向,以及对于每个相关成分,旋转速率,科里奥利力,科里奥利力,归一化的能量耗散速率,与辐射过程和粘度相关的平衡潮汐以及经典的倍感运动常数。这些取决于恒星参数,不需要其他假设或现象学方法,正如过去所述。它们可用于确定系统的演变,并以最初的自旋和轨道角动量严重未对准为含有热木星的系统的假设。 Coriolis力的包含可能导致轨道和旋转角动量之间的倾斜度以及可能具有观察后果的轨道平面的动力。
We consider the evolution of a binary system interacting due to tidal effects without restriction on the orientation of the orbital, and where significant, spin angular momenta, and orbital eccentricity. We work in the low tidal forcing frequency regime in the equilibrium tide approximation. Internal degrees of freedom are fully taken into account for one component, the primary. In the case of the companion the spin angular momentum is assumed small enough to be neglected but internal energy dissipation is allowed for as this can be significant for orbital circularisation in the case of planetary companions. We obtain a set of equations governing the evolution of the orbit resulting from tidal effects. These depend on the masses and radii of the binary components, the form and orientation of the orbit, and for each involved component, the spin rate, the Coriolis force, the normalised rate of energy dissipation associated with the equilibrium tide due to radiative processes and viscosity, and the classical apsidal motion constant. These depend on stellar parameters with no need of additional assumptions or a phenomenological approach as has been invoked in the past. They can be used to determine the evolution of systems with initial significant misalignment of spin and orbital angular momenta as hypothesised for systems containing Hot Jupiters. The inclusion of the Coriolis force may lead to evolution of the inclination between orbital and spin angular momenta and precession of the orbital plane which may have observational consequences.