论文标题
质量转移物理学对现场二进制黑洞种群可观察的特性的影响
The impact of mass-transfer physics on the observable properties of field binary black hole populations
论文作者
论文摘要
我们研究质量转移物理学对通过孤立二元进化形成的二元黑洞种群可观察到的特性的影响。我们研究了质量 - 积分效率对紧凑对象的影响和公共 - 内玻璃效率对$χ_{eff} $,$ m_ {chirp} $和$ q $的观察到的分布的影响。我们发现,低公共包络效率转化为更紧密的轨道,因此更潮汐旋转第二胎黑洞。但是,这些系统的合并时间尺度很短,只能通过当前的重力波探测器在高红移($ z \ sim 2 $)的外部探测器范围内形成并合并。假设Eddington限制的增生效率,并且首先出生的黑洞是用可忽略的旋转形成的,我们发现可检测到的人群中的所有非零$χ_{eff} $系统只能来自共同的信封通道,因为稳定的质量转移通道无法缩小Orbits,无法进行有效的潮汐旋转。我们发现公共信封频道的局部速率密度($ z \ simeq 0.01 $)在$ \ sim 17-113〜gpc^{ - 3} yr^{ - 1} $的范围内,考虑到$α__{CE} \ in [0.2,5.0] $ sim $ sim $ sim $ \ sim $ \ sims $ \ 25〜gpc^{ - 3} yr^{ - 1} $。如果在黑洞上的质量积聚不是爱丁顿有限的,则后者下降了两个数量级,因为保守的传质不会像非保守的传质那样有效地收缩轨道。最后,使用GWTC-2事件,我们将分支分数的下限与检测到的人群中的其他编队通道的下限为$ \ sim 0.2 $。假设所有剩余的事件都是通过稳定的传质或共同的包膜通道形成的,我们发现中度至有力的证据支持具有效率低下的普通信封的模型。
We study the impact of mass-transfer physics on the observable properties of binary black hole populations formed through isolated binary evolution. We investigate the impact of mass-accretion efficiency onto compact objects and common-envelope efficiency on the observed distributions of $χ_{eff}$, $M_{chirp}$ and $q$. We find that low common envelope efficiency translates to tighter orbits post common envelope and therefore more tidally spun up second-born black holes. However, these systems have short merger timescales and are only marginally detectable by current gravitational-waves detectors as they form and merge at high redshifts ($z\sim 2$), outside current detector horizons. Assuming Eddington-limited accretion efficiency and that the first-born black hole is formed with a negligible spin, we find that all non-zero $χ_{eff}$ systems in the detectable population can come only from the common envelope channel as the stable mass-transfer channel cannot shrink the orbits enough for efficient tidal spin-up to take place. We find the local rate density ($z\simeq 0.01$) for the common envelope channel is in the range $\sim 17-113~Gpc^{-3}yr^{-1}$ considering a range of $α_{CE} \in [0.2,5.0]$ while for the stable mass transfer channel the rate density is $\sim 25~Gpc^{-3}yr^{-1}$. The latter drops by two orders of magnitude if the mass accretion onto the black hole is not Eddington limited because conservative mass transfer does not shrink the orbit as efficiently as non-conservative mass transfer does. Finally, using GWTC-2 events, we constrain the lower bound of branching fraction from other formation channels in the detected population to be $\sim 0.2$. Assuming all remaining events to be formed through either stable mass transfer or common envelope channels, we find moderate to strong evidence in favour of models with inefficient common envelopes.