论文标题

在热方程的数值溶液中,圆形到新的和随机舍入的影响低精度

Effects of round-to-nearest and stochastic rounding in the numerical solution of the heat equation in low precision

论文作者

Croci, Matteo, Giles, Michael B.

论文摘要

由于机器学习的出现,最近几年已经看到了硬件支持的低精度计算的回归。数字较少的计算速度更快,更多的内存和能源效率,但可能非常容易舍入错误。如最近对降低精确气候模拟的研究所示,该应用可以在很大程度上受益于低精度计算的优势,这是部分微分方程(PDES)的数值解决方案。但是,需要仔细的实施和舍入误差分析,以确保仍然可以获得明智的结果。 在本文中,我们通过使用圆形 - 近距离(RTN)和随机舍入(SR)的runge-kutta有限差异方法研究了热方程溶液中圆形误差的积累。我们演示了如何实现减少四舍五入错误的方案,并得出了\ emph {a先验和全局舍入错误的估计。让$ u $为单位圆形。相对于离散参数(网格大小和时间步),最坏的局部错误是$ O(u)$,但RTN和SR错误行为大不相同。实际上,RTN解决方案总是会停滞在小$ΔT$中,直到停滞之前,全局误差就会像$ o(uδt^{ - 1})$一样生长。相比之下,我们表明SR引入的前阶误差为零,独立于空间和无均值的时间,使SR对停滞和舍入误差积累的弹性。实际上,我们证明,对于SR,全局舍入错误仅为1D中的$ o(uΔt^{ - 1/4})$,并且在较高的维度中基本上是有限的(达到对数因素)。

Motivated by the advent of machine learning, the last few years have seen the return of hardware-supported low-precision computing. Computations with fewer digits are faster and more memory and energy efficient, but can be extremely susceptible to rounding errors. As shown by recent studies into reduced-precision climate simulations, an application that can largely benefit from the advantages of low-precision computing is the numerical solution of partial differential equations (PDEs). However, a careful implementation and rounding error analysis are required to ensure that sensible results can still be obtained. In this paper we study the accumulation of rounding errors in the solution of the heat equation, a proxy for parabolic PDEs, via Runge-Kutta finite difference methods using round-to-nearest (RtN) and stochastic rounding (SR). We demonstrate how to implement the scheme to reduce rounding errors and we derive \emph{a priori} estimates for local and global rounding errors. Let $u$ be the unit roundoff. While the worst-case local errors are $O(u)$ with respect to the discretization parameters (mesh size and timestep), the RtN and SR error behavior is substantially different. In fact, the RtN solution always stagnates for small enough $Δt$, and until stagnation the global error grows like $O(uΔt^{-1})$. In contrast, we show that the leading-order errors introduced by SR are zero-mean, independent in space and mean-independent in time, making SR resilient to stagnation and rounding error accumulation. In fact, we prove that for SR the global rounding errors are only $O(uΔt^{-1/4})$ in 1D and are essentially bounded (up to logarithmic factors) in higher dimensions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源