论文标题

心电图的前进和反向问题中的时空形状不确定性

Space-time shape uncertainties in the forward and inverse problem of electrocardiography

论文作者

Gander, Lia, Krause, Rolf, Multerer, Michael, Pezzuto, Simone

论文摘要

在心电图学中,“经典”逆问题是在表面上重建电势,该电位从身体表面的远程记录中封闭心脏,并准确描述解剖结构。后者受噪声的影响并因临床限制而获得有限的分辨率,在反重建中可能会持续存在较大的不确定性。 这项工作的目的是研究形状不确定性对心电图造影的正向和反向问题的影响。为此,问题首先是将边界积分制剂重新铸造,然后使用搭配方法离散,以达到高收敛速率和快速的解决方案。域的形状不确定性由参考配置上定义的随机变形字段表示。我们提出了一个定期的时间协方差内核,用于随机场,并使用低级技术近似Karhunen-Loève扩展,以快速采样。预期电位及其方差的时空不确定性通过各向异性稀疏的正交方法评估,并通过准蒙特卡洛方法验证。 我们在简化但生理扎根的二维几何形状上介绍了几个数值实验,以说明该方法的有效性。测试的参数尺寸范围从100到600。对于正向问题,稀疏正交非常有效。在反问题中,稀疏的正交和准蒙特卡洛方法按预期执行,除了总变化正则化,在这种变化正则化之外,由于缺乏规律性,收敛受到限制。我们最终研究了$ h^{1/2} $正则化,该化自然源于边界积分公式,并将其与更古典的方法进行比较。

In electrocardiography, the "classic" inverse problem is the reconstruction of electric potentials at a surface enclosing the heart from remote recordings at the body surface and an accurate description of the anatomy. The latter being affected by noise and obtained with limited resolution due to clinical constraints, a possibly large uncertainty may be perpetuated in the inverse reconstruction. The purpose of this work is to study the effect of shape uncertainty on the forward and the inverse problem of electrocardiography. To this aim, the problem is first recast into a boundary integral formulation and then discretised with a collocation method to achieve high convergence rates and a fast time to solution. The shape uncertainty of the domain is represented by a random deformation field defined on a reference configuration. We propose a periodic-in-time covariance kernel for the random field and approximate the Karhunen-Loève expansion using low-rank techniques for fast sampling. The space-time uncertainty in the expected potential and its variance is evaluated with an anisotropic sparse quadrature approach and validated by a quasi-Monte Carlo method. We present several numerical experiments on a simplified but physiologically grounded 2-dimensional geometry to illustrate the validity of the approach. The tested parametric dimension ranged from 100 up to 600. For the forward problem the sparse quadrature is very effective. In the inverse problem, the sparse quadrature and the quasi-Monte Carlo method perform as expected, except for the total variation regularisation, where convergence is limited by lack of regularity. We finally investigate an $H^{1/2}$ regularisation, which naturally stems from the boundary integral formulation, and compare it to more classical approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源