论文标题
虹膜观察到活性区域流出的低气层对应物
IRIS observations of the low-atmosphere counterparts of active region outflows
论文作者
论文摘要
自从\ textit {hinode}/eis推出以来,已经对活动区域(AR)流出进行了详细的研究,并被认为为慢性太阳风提供了质量和能量的来源。在这项工作中,我们使用\ textIt {接口区域成像光谱仪}(\ textit {iris})的观测来研究AR流出的下部大气层。我们发现\ textIt {iris} \ siiv,\ cii \和\ mgii \过渡区(TR)和色层线在流出中表现出不同的光谱特征,与热AR回路的脚步点(“ moss”)相比,与相邻区域相比。流出区域中\ siiv \的平均红移($ \ $ \ $ 5.5〜 km s $^{ - 1} $)小于典型的苔藓($ \ $ \ $ \ $ \ $ \ $ 12--13 km〜s $^{ - 1} $)和sige sun stuile($ \ $ 7.5 km〜s $^s $^s $^iS} $ \ sile corlue as bl use and lues and lue and lue cout。 ($ \ $ -1.1--1-1.5 km〜s $^{ - 1} $),与观察到的苔藓相反,将其红移大约$ \ $ \ $ \ $ 2.5 km〜s $^{ - 1} $。此外,我们观察到,冠状流出下方的低大气是高度结构化的,在\ siiv \ \ siiv \中存在蓝光,而正\ mgii \ k2不对称(可以解释为摩尔斯中主要未观察到的色体上流的特征)。这些观察结果表明,冠状流出与下面的色球圈和TR之间存在明显的相关性,这之前尚未显示。我们的工作强烈表明,这些区域不是独立的环境,应共同处理,而当前的AR流出理论(例如交换重新连接模型)需要考虑到低气氛的动态。
Active region (AR) outflows have been studied in detail since the launch of \textit{Hinode}/EIS and are believed to provide a possible source of mass and energy to the slow solar wind. In this work, we investigate the lower atmospheric counterpart of AR outflows using observations from the \textit{Interface Region Imaging Spectrograph} (\textit{IRIS}). We find that the \textit{IRIS} \siiv, \cii\ and \mgii\ transition region (TR) and chromospheric lines exhibit different spectral features in the outflows as compared to neighboring regions at the footpoints ("moss") of hot AR loops. The average redshift of \siiv\ in the outflows region ($\approx$ 5.5~km s$^{-1}$) is smaller than typical moss ($\approx$ 12--13 km~s$^{-1}$) and quiet Sun ($\approx$ 7.5 km~s$^{-1}$) values, while the \cii~line is blueshifted ($\approx$ -1.1--1.5 km~s$^{-1}$), in contrast to the moss where it is observed to be redshifted by about $\approx$ 2.5 km~s$^{-1}$. Further, we observe that the low atmosphere underneath the coronal outflows is highly structured, with the presence of blueshifts in \siiv\ and positive \mgii\ k2 asymmetries (which can be interpreted as signatures of chromospheric upflows) which are mostly not observed in the moss. These observations show a clear correlation between the coronal outflows and the chromosphere and TR underneath, which has not been shown before. Our work strongly suggests that these regions are not separate environments and should be treated together, and that current leading theories of AR outflows, such as the interchange reconnection model, need to take into account the dynamics of the low atmosphere.