论文标题

RUREBUS:一个命名实体识别和从电子政务领域提取的联合关系的案例研究

RuREBus: a Case Study of Joint Named Entity Recognition and Relation Extraction from e-Government Domain

论文作者

Ivanin, Vitaly, Artemova, Ekaterina, Batura, Tatiana, Ivanov, Vladimir, Sarkisyan, Veronika, Tutubalina, Elena, Smurov, Ivan

论文摘要

我们显示了信息提取方法的应用,例如命名实体识别(NER)和关系提取(RE)(re)(由国家机构发行的文件组成)。该语料库的主要挑战是:1)注释方案与用于通用域Corpora使用的方案有很大不同,2)文档以英语以外的其他语言编写。与期望不同,基于最先进的变压器模型在依次接近或以端到端方式接近时,都显示出适度的性能。我们的实验表明,对大型未标记的语料库进行微调不会自动产生重大改进,因此我们可以得出结论,需要更复杂的利用未标记文本的策略。在本文中,我们描述了整个开发的管道,从文本注释,基线开发和设计共同的任务开始,希望改善基线。最终,我们意识到当前的NER和RE技术远非成熟,并且没有像我们这样的挑战。

We show-case an application of information extraction methods, such as named entity recognition (NER) and relation extraction (RE) to a novel corpus, consisting of documents, issued by a state agency. The main challenges of this corpus are: 1) the annotation scheme differs greatly from the one used for the general domain corpora, and 2) the documents are written in a language other than English. Unlike expectations, the state-of-the-art transformer-based models show modest performance for both tasks, either when approached sequentially, or in an end-to-end fashion. Our experiments have demonstrated that fine-tuning on a large unlabeled corpora does not automatically yield significant improvement and thus we may conclude that more sophisticated strategies of leveraging unlabelled texts are demanded. In this paper, we describe the whole developed pipeline, starting from text annotation, baseline development, and designing a shared task in hopes of improving the baseline. Eventually, we realize that the current NER and RE technologies are far from being mature and do not overcome so far challenges like ours.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源