论文标题

Gripnet:异质图超图上的图形信息传播

GripNet: Graph Information Propagation on Supergraph for Heterogeneous Graphs

论文作者

Xu, Hao, Sang, Shengqi, Bai, Peizhen, Yang, Laurence, Lu, Haiping

论文摘要

异构图表示学习旨在学习不同类型实体的低维矢量表示,并关系以增强下游任务。现有方法要么以复杂的方式捕获语义关系,但间接地利用节点/边缘属性,或者直接利用节点/边缘属性而无需考虑语义关系。当涉及多次卷积操作时,它们的可扩展性也很差。为了克服这些局限性,本文提出了一个灵活有效的图形信息传播网络(GRIPNET)框架。具体而言,我们引入了一个由超级纵向和超级中心组成的新的超级图数据结构。超级vert体是语义上的子图。一个超级架构定义了两个超级纵向之间的信息传播路径。 Gripnet通过使用多个层沿定义的路径传播信息来学习感兴趣的超级垂体的新表示形式。我们构建了多个大型图形,并根据竞争方法评估Gripnet,以显示其在链接预测,节点分类和数据集成中的优越性。

Heterogeneous graph representation learning aims to learn low-dimensional vector representations of different types of entities and relations to empower downstream tasks. Existing methods either capture semantic relationships but indirectly leverage node/edge attributes in a complex way, or leverage node/edge attributes directly without taking semantic relationships into account. When involving multiple convolution operations, they also have poor scalability. To overcome these limitations, this paper proposes a flexible and efficient Graph information propagation Network (GripNet) framework. Specifically, we introduce a new supergraph data structure consisting of supervertices and superedges. A supervertex is a semantically-coherent subgraph. A superedge defines an information propagation path between two supervertices. GripNet learns new representations for the supervertex of interest by propagating information along the defined path using multiple layers. We construct multiple large-scale graphs and evaluate GripNet against competing methods to show its superiority in link prediction, node classification, and data integration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源