论文标题
热力学变异物镜的高斯工艺强盗优化
Gaussian Process Bandit Optimization of the Thermodynamic Variational Objective
论文作者
论文摘要
实现热力学变异物镜(TVO)的全部承诺,这是最近提出的涉及一维riemann积分近似的日志证据的变异下限,需要选择分类的离散点的“时间表”。本文介绍了一种定制的高斯工艺强盗优化方法,用于自动选择这些点。我们的方法不仅可以使他们的一次性选择自动化,而且在优化过程中动态调整了其位置,从而改善了模型学习和推断。我们提供理论保证,即我们的匪徒优化会融合到遗憾的最小化集成点的选择。我们的算法的经验验证是根据改进的学习和推理的变异自动编码器和sigmoid信念网络提供的。
Achieving the full promise of the Thermodynamic Variational Objective (TVO), a recently proposed variational lower bound on the log evidence involving a one-dimensional Riemann integral approximation, requires choosing a "schedule" of sorted discretization points. This paper introduces a bespoke Gaussian process bandit optimization method for automatically choosing these points. Our approach not only automates their one-time selection, but also dynamically adapts their positions over the course of optimization, leading to improved model learning and inference. We provide theoretical guarantees that our bandit optimization converges to the regret-minimizing choice of integration points. Empirical validation of our algorithm is provided in terms of improved learning and inference in Variational Autoencoders and Sigmoid Belief Networks.