论文标题
研究对称空间的亚策略时,中间RICCI和同型的风味
The flavour of intermediate Ricci and homotopy when studying submanifolds of symmetric spaces
论文作者
论文摘要
我们根据一种基于计算$ k $ s阳性的环境流形曲率的方法来研究和识别简单连接的对称类型的submanifolds的新技术。这提供了编码范围,其中cartan类型的子曼群满足了某些条件,而这些条件完全是地球,必然等于环境歧管之一。利用Guijarro的结果 - 我们的方法我们的方法部分概括了Berndt的最新工作 - 索尔莫斯在索引猜想上。
We introduce a new technique to the study and identification of submanifolds of simply-connected symmetric spaces of compact type based upon an approach computing $k$-positive Ricci curvature of the ambient manifolds and using this information in order to determine how highly connected the embeddings are. This provides codimension ranges in which the Cartan type of submanifolds satisfying certain conditions which generalize being totally geodesic necessarily equals the one of the ambient manifold. Using results by Guijarro--Wilhelm our approach partly generalizes recent work by Berndt--Olmos on the index conjecture.