论文标题

因果动力学三角剖分:2D案例研究

Compact Gauge Fields on Causal Dynamical Triangulations: a 2D case study

论文作者

Candido, Alessandro, Clemente, Giuseppe, D'Elia, Massimo, Rottoli, Federico

论文摘要

我们讨论了阳米尔斯理论在紧凑型配方中动态三角剖分的离散化,仪表场生活在与三角剖分相关的双图的链接上,以及通过蒙特卡洛模拟对最小耦合系统的数值研究。我们特别提供了马尔可夫链动作的明确构造和实施,该动作与$ u(1)$(1)$或$ su(2)$ gauge fields相连;在两种情况下,还列出了在环形几何形状上的探索性数值模拟结果。我们研究了与重力相关的可观察物的关键行为,确定相关的关键指标,这些指数与裸机耦合无关:我们特别获得$ν= 0.496(7)$,用于调节体积曲线相关长度的差异。还研究了量规可观测值,包括固体(Torelons),以及对于$ u(1)$量表理论,绕组数量和拓扑敏感性。一个有趣的结果是,通过存在局部可变的几何形状,拓扑电荷放慢拓扑电荷的降低,这可能会在其他情况下强烈抑制(即,通过局部变化的几何形状,似乎也可能暗示可能改善的可能方法。

We discuss the discretization of Yang-Mills theories on Dynamical Triangulations in the compact formulation, with gauge fields living on the links of the dual graph associated with the triangulation, and the numerical investigation of the minimally coupled system by Monte Carlo simulations. We provide, in particular, an explicit construction and implementation of the Markov chain moves for 2D Causal Dynamical Triangulations coupled to either $U(1)$ or $SU(2)$ gauge fields; the results of exploratory numerical simulations on a toroidal geometry are also presented for both cases. We study the critical behavior of gravity related observables, determining the associated critical indices, which turn out to be independent of the bare gauge coupling: we obtain in particular $ν= 0.496(7)$ for the critical index regulating the divergence of the correlation length of the volume profiles. Gauge observables are also investigated, including holonomies (torelons) and, for the $U(1)$ gauge theory, the winding number and the topological susceptibility. An interesting result is that the critical slowing down of the topological charge, which affects various lattice field theories in the continuum limit, seems to be strongly suppressed (i.e., by orders of magnitude) by the presence of a locally variable geometry: that may suggest possible ways for improvement also in other contexts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源