论文标题

使用弱标记的视频进行疼痛强度估计的序数回归的深度DA

Deep DA for Ordinal Regression of Pain Intensity Estimation Using Weakly-Labeled Videos

论文作者

R, Gnana Praveen, Granger, Eric, Cardinal, Patrick

论文摘要

视频中面部表情的疼痛强度的自动估计在医疗保健应用中具有巨大的潜力。但是,需要域的适应性(DA)来减轻通常在源和目标do-ains中捕获的视频数据之间发生的域移动问题。鉴于收集和注释视频的艰巨任务以及由于相邻强度水平之间的歧义而引起的主观偏见,因此弱监督学习(WSL)在此类应用中引起了人们的注意。但是,大多数最先进的WSL模型通常被称为回归问题,并且不利用强度水平之间的顺序关系,也不利用多个连续帧的时间连贯性。本文介绍了一种新的深度学习模型,该模型针对有序回归(WSDA-OR)的弱监督DA(WSDA-OR),其中目标域中的视频定期提供了粗la-bels。 WSDA-OR模型在符合目标序列的强度级别之间执行序数关系,并将多个相关帧与序列级别标签相关联(而不是单个帧)。特别是,它通过将多个静置学习与深层对抗性DA集成,从而学习判别和域不变特征表示,其中软高斯标签用于有效地表示来自目标域中的弱序序级标签。在Recola视频数据集上验证了所提出的方法为完全标记的源域,而UNBC-MCMASTER视频数据是弱标记的目标域。我们还验证了WSDA-或BiovID和疲劳(私有)数据集的序列估计。实验结果表明,我们的方法可以比最新模型提供显着改善,从而实现更高的本地化精度。

Automatic estimation of pain intensity from facial expressions in videos has an immense potential in health care applications. However, domain adaptation (DA) is needed to alleviate the problem of domain shifts that typically occurs between video data captured in source and target do-mains. Given the laborious task of collecting and annotating videos, and the subjective bias due to ambiguity among adjacent intensity levels, weakly-supervised learning (WSL)is gaining attention in such applications. Yet, most state-of-the-art WSL models are typically formulated as regression problems, and do not leverage the ordinal relation between intensity levels, nor the temporal coherence of multiple consecutive frames. This paper introduces a new deep learn-ing model for weakly-supervised DA with ordinal regression(WSDA-OR), where videos in target domain have coarse la-bels provided on a periodic basis. The WSDA-OR model enforces ordinal relationships among the intensity levels as-signed to the target sequences, and associates multiple relevant frames to sequence-level labels (instead of a single frame). In particular, it learns discriminant and domain-invariant feature representations by integrating multiple in-stance learning with deep adversarial DA, where soft Gaussian labels are used to efficiently represent the weak ordinal sequence-level labels from the target domain. The proposed approach was validated on the RECOLA video dataset as fully-labeled source domain, and UNBC-McMaster video data as weakly-labeled target domain. We have also validated WSDA-OR on BIOVID and Fatigue (private) datasets for sequence level estimation. Experimental results indicate that our approach can provide a significant improvement over the state-of-the-art models, allowing to achieve a greater localization accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源