论文标题

按需运输服务的可解释数据驱动的需求建模

Interpretable Data-Driven Demand Modelling for On-Demand Transit Services

论文作者

Alsaleh, Nael, Farooq, Bilal

论文摘要

近年来,随着信息和通信技术的进步,在低密度地区(包括按需运输(ODT),按需(MOD)Transit和CrowdSourced Emarity Services)中引入了不同新兴的按需共享移动服务作为创新解决方案。但是,由于其起步阶段,因此非常需要了解和建模对这些服务的需求。在这项研究中,我们使用四种机器学习算法开发了在传播区域(DA)水平的ODT服务的旅行生产和分配模型:随机森林(RF),包装,人工神经网络(ANN)和深神经网络(DNN)。建模过程中使用的数据是从Belleville的ODT操作数据和2016年人口普查数据中获取的。贝叶斯最佳化方法用于找到所采用算法的最佳体系结构。此外,事后模型被用来解释预测并检查解释变量的重要性。结果表明,土地利用类型是行程生产模型中最重要的变量。另一方面,旅行目的地的人口统计学特征是行程分布模型中最重要的变量。此外,结果表明,在具有高密度住宅用途的商业/工业土地使用类型和传播区域之间的传播区域之间的旅行分配水平较高。我们的发现表明,通过(a)在具有商业/工业土地使用的社区中找到闲置车辆以及(b)使用此工作中获得的时空需求模型来不断更新操作机队的规模,可以进一步增强ODT服务的性能。

In recent years, with the advancements in information and communication technology, different emerging on-demand shared mobility services have been introduced as innovative solutions in the low-density areas, including on-demand transit (ODT), mobility on-demand (MOD) transit, and crowdsourced mobility services. However, due to their infancy, there is a strong need to understand and model the demand for these services. In this study, we developed trip production and distribution models for ODT services at Dissemination areas (DA) level using four machine learning algorithms: Random Forest (RF), Bagging, Artificial Neural Network (ANN) and Deep Neural Network (DNN). The data used in the modelling process were acquired from Belleville's ODT operational data and 2016 census data. Bayesian optimalization approach was used to find the optimal architecture of the adopted algorithms. Moreover, post-hoc model was employed to interpret the predictions and examine the importance of the explanatory variables. The results showed that the land-use type was the most important variable in the trip production model. On the other hand, the demographic characteristics of the trip destination were the most important variables in the trip distribution model. Moreover, the results revealed that higher trip distribution levels are expected between dissemination areas with commercial/industrial land-use type and dissemination areas with high-density residential land-use. Our findings suggest that the performance of ODT services can be further enhanced by (a) locating idle vehicles in the neighbourhoods with commercial/industrial land-use and (b) using the spatio-temporal demand models obtained in this work to continuously update the operating fleet size.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源