论文标题

使用HSIC-LASSO进行选择后推断

Post-selection inference with HSIC-Lasso

论文作者

Freidling, Tobias, Poignard, Benjamin, Climente-González, Héctor, Yamada, Makoto

论文摘要

在非线性和/或高维数据中检测有影响力的特征是机器学习的一项挑战且越来越重要的任务。因此,可变选择方法已经引起了很多关注以及选择后推断。实际上,当不考虑选择过程时,所选功能可能会显着缺陷。我们根据截短的高斯框架与多面体引理的框架,使用所谓的无模型“ HSIC-LASSO”提出了选择性推理程序。然后,我们开发了一种算法,该算法允许低计算成本并提供正则化参数的选择。基于人工数据和现实数据的实验都说明了我们方法的性能,这强调了对I型误差的严格控制,即使对于小样本量也是如此。

Detecting influential features in non-linear and/or high-dimensional data is a challenging and increasingly important task in machine learning. Variable selection methods have thus been gaining much attention as well as post-selection inference. Indeed, the selected features can be significantly flawed when the selection procedure is not accounted for. We propose a selective inference procedure using the so-called model-free "HSIC-Lasso" based on the framework of truncated Gaussians combined with the polyhedral lemma. We then develop an algorithm, which allows for low computational costs and provides a selection of the regularisation parameter. The performance of our method is illustrated by both artificial and real-world data based experiments, which emphasise a tight control of the type-I error, even for small sample sizes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源