论文标题
超级量子共同学I:Neveu-Schwarz穿刺的零属的超级稳定地图
Super quantum cohomology I: Super stable maps of genus zero with Neveu-Schwarz punctures
论文作者
论文摘要
在本文中,我们通过标记的树定义了稳定的超级弯曲和零属的超级稳定地图。我们证明,稳定超弯曲的模量空间和固定树类型的超级稳定地图是商的超浮雕。为此,我们证明了一个切片定理,用于超级谎言群体对Riemannian Supermanifolds的行动并讨论超级怪物。此外,我们在超稳定地图上提出了一个Gromov拓扑拓扑,以使固定树类型的限制可产生超纤维的商拓扑,而还原是紧凑的。这可能会导致在续集中讨论超级Gromov-witten不变性和小型超级量子共同体的概念。
In this article we define stable supercurves and super stable maps of genus zero via labeled trees. We prove that the moduli space of stable supercurves and super stable maps of fixed tree type are quotient superorbifolds. To this end, we prove a slice theorem for the action of super Lie groups on Riemannian supermanifolds and discuss superorbifolds. Furthermore, we propose a Gromov topology on super stable maps such that the restriction to fixed tree type yields the quotient topology from the superorbifolds and the reduction is compact. This would, possibly, lead to the notions of super Gromov-Witten invariants and small super quantum cohomology to be discussed in sequels.