论文标题

提高非IID设置中联合学习的准确性

Improving Accuracy of Federated Learning in Non-IID Settings

论文作者

Ozdayi, Mustafa Safa, Kantarcioglu, Murat, Iyer, Rishabh

论文摘要

联合学习(FL)是一种分散的机器学习协议,允许一组参与的代理在不共享数据的情况下进行协作训练模型。这使得FL特别适合需要数据隐私的设置。但是,已经观察到,FL的性能与代理的局部数据分布密切相关。特别是,在代理商之间本地数据分布差异很大的环境中,FL在集中式培训方面的性能差。为了解决这个问题,我们假设绩效退化背后的原因,并开发一些技术以相应地解决这些原因。在这项工作中,我们确定了四种可以提高训练模型的性能的简单技术,而不会引起与FL的任何其他通信开销,但是,客户端或服务器端上的某些照明计算上的开销。在我们的实验分析中,我们技术的组合提高了通过FL训练的模型相对于我们的基线训练的精度超过12%。这比对集中数据训练的模型的准确性低约5%。

Federated Learning (FL) is a decentralized machine learning protocol that allows a set of participating agents to collaboratively train a model without sharing their data. This makes FL particularly suitable for settings where data privacy is desired. However, it has been observed that the performance of FL is closely tied with the local data distributions of agents. Particularly, in settings where local data distributions vastly differ among agents, FL performs rather poorly with respect to the centralized training. To address this problem, we hypothesize the reasons behind the performance degradation, and develop some techniques to address these reasons accordingly. In this work, we identify four simple techniques that can improve the performance of trained models without incurring any additional communication overhead to FL, but rather, some light computation overhead either on the client, or the server-side. In our experimental analysis, combination of our techniques improved the validation accuracy of a model trained via FL by more than 12% with respect to our baseline. This is about 5% less than the accuracy of the model trained on centralized data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源