论文标题
在一个编码中,球形和投影空间之间地图的根
Roots of maps between spheres and projective spaces in codimension one
论文作者
论文摘要
对于从$ s^3 $和$ \ rp^3 $到$ s^2 $和$ \ rp^2 $的地图,我们研究了通过通过同型将映射变形来最大程度地减少根集的问题。在介绍了此类地图的同质类别的分类之后,我们证明了非零余量映射的最小根集是圆圈或两个圆圈的不相交联合,分别为$ s^2 $或$ \ rp^2 $。
For maps from $S^3$ and $\RP^3$ into $S^2$ and $\RP^2$, we study the problem of minimizing the root set by deforming the maps through homotopies. After presenting the classification of the homotopy classes of such maps, we prove that the minimal root set for a non null-homotopic map is either a circle or the disjoint union of two circle, according its range is $S^2$ or $\RP^2$, respectively.