论文标题

混合模拟有限差分和虚拟元素配方的耦合门力学

Hybrid mimetic finite-difference and virtual element formulation for coupled poromechanics

论文作者

Borio, Andrea, Hamon, François, Castelletto, Nicola, White, Joshua A., Settgast, Randolph R.

论文摘要

我们为在非结构化网格上耦合的单相门力学提供了混合模拟有限差异和虚拟元素公式。该方案的关键优势在于,它在包含具有任意形状的高度变形细胞的复杂网格上收敛。我们使用基于非结构化宏观元素的局部压力跳跃稳定方法来防止在接近不排水条件的不可压缩问题中发展伪压模式。使用专门为由提议的离散化产生的鞍点系统设计的块三角预处理程序获得了可扩展的线性解决方案策略。在二维基准问题上,我们的方法的准确性和效率在数值上得到了证明。

We present a hybrid mimetic finite-difference and virtual element formulation for coupled single-phase poromechanics on unstructured meshes. The key advantage of the scheme is that it is convergent on complex meshes containing highly distorted cells with arbitrary shapes. We use a local pressure-jump stabilization method based on unstructured macro-elements to prevent the development of spurious pressure modes in incompressible problems approaching undrained conditions. A scalable linear solution strategy is obtained using a block-triangular preconditioner designed specifically for the saddle-point systems arising from the proposed discretization. The accuracy and efficiency of our approach are demonstrated numerically on two-dimensional benchmark problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源