论文标题

小组谐波和群体宽松最大化 - 近似和工程

Group-Harmonic and Group-Closeness Maximization -- Approximation and Engineering

论文作者

Angriman, Eugenio, Becker, Ruben, D'Angelo, Gianlorenzo, Gilbert, Hugo, van der Grinten, Alexander, Meyerhenke, Henning

论文摘要

中心度衡量标准是网络中重要节点的特征。有效地计算此类节点已引起了很多关注。在考虑计算节点中央组的概括时,会出现具有挑战性的优化问题。在这项工作中,我们从理论和算法工程的角度研究了两个这样的问题:群体谐波的最大化和群体智能最大化。 在理论方面,我们获得以下结果。对于集体谐波最大化,除非$ p = np $,否则没有多项式时算法可以实现近似因子的近似因素,即使对于未加权的图,也没有$ 1-1/e $(指导)和$ 1-1/(4E)$(未指向)。从积极的一面来看,我们表明,贪婪的算法达到了$λ(1-2/e)$(指示)和$λ(1-1/e)/2 $(无方向)的近似系数,其中$λ$是最小和最大边缘的比率。对于群体 - 智能最大化,无向情况是$ NP $ - hard的近似值在一个以内的近似值大于$ 1-1/(E+1)$,并且通过本地搜索算法实现了恒定的近似因子。但是,对于指示案例,我们表明,对于任何$ε<1/2 $,问题是$ np $ - hard近似于$ 4 | v |^{ - ε} $。 从算法工程的角度来看,我们提供了上述贪婪和本地搜索算法的有效实现。在我们的实验研究中,我们表明,在可以在合理时间内计算最佳解决方案的小实例中,贪婪和当地搜索算法的质量都非常接近最佳。在较大的情况下,与现有的贪婪和本地搜索解决方案相比,我们本地搜索算法的质量较高,而额外的运行时间为额外的运行时间。因此,我们主张本地搜索解决方案质量最引起关注的方案。

Centrality measures characterize important nodes in networks. Efficiently computing such nodes has received a lot of attention. When considering the generalization of computing central groups of nodes, challenging optimization problems occur. In this work, we study two such problems, group-harmonic maximization and group-closeness maximization both from a theoretical and from an algorithm engineering perspective. On the theoretical side, we obtain the following results. For group-harmonic maximization, unless $P=NP$, there is no polynomial-time algorithm that achieves an approximation factor better than $1-1/e$ (directed) and $1-1/(4e)$ (undirected), even for unweighted graphs. On the positive side, we show that a greedy algorithm achieves an approximation factor of $λ(1-2/e)$ (directed) and $λ(1-1/e)/2$ (undirected), where $λ$ is the ratio of minimal and maximal edge weights. For group-closeness maximization, the undirected case is $NP$-hard to be approximated to within a factor better than $1-1/(e+1)$ and a constant approximation factor is achieved by a local-search algorithm. For the directed case, however, we show that, for any $ε<1/2$, the problem is $NP$-hard to be approximated within a factor of $4|V|^{-ε}$. From the algorithm engineering perspective, we provide efficient implementations of the above greedy and local search algorithms. In our experimental study we show that, on small instances where an optimum solution can be computed in reasonable time, the quality of both the greedy and the local search algorithms come very close to the optimum. On larger instances, our local search algorithms yield results with superior quality compared to existing greedy and local search solutions, at the cost of additional running time. We thus advocate local search for scenarios where solution quality is of highest concern.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源