论文标题
解决通信系统中的稀疏线性反问题:一种具有自适应深度的深度学习方法
Solving Sparse Linear Inverse Problems in Communication Systems: A Deep Learning Approach With Adaptive Depth
论文作者
论文摘要
来自嘈杂的线性测量结果稀疏信号恢复问题出现在无线通信的许多领域中。近年来,基于深度学习(DL)的方法通过将迭代算法作为神经网络展开,吸引了研究人员的兴趣来解决稀疏的线性逆问题。通常,关于DL的研究假设固定数量的网络层。但是,它忽略了传统迭代算法中的关键特征,其中收敛所需的迭代次数随不同的稀疏度而变化。通过调查预计的梯度下降,我们揭示了具有固定深度的现有DL方法的缺点。然后,我们提出了一个端到端可训练的DL体系结构,该体系结构涉及每一层的额外停止分数。因此,提出的方法了解要执行多少层以发出输出,并且在推理阶段为每个任务动态调整了网络深度。我们使用合成数据和应用程序进行实验,包括大量MTC和大规模MIMO通道估计,结果证明了该方法的提高效率。
Sparse signal recovery problems from noisy linear measurements appear in many areas of wireless communications. In recent years, deep learning (DL) based approaches have attracted interests of researchers to solve the sparse linear inverse problem by unfolding iterative algorithms as neural networks. Typically, research concerning DL assume a fixed number of network layers. However, it ignores a key character in traditional iterative algorithms, where the number of iterations required for convergence changes with varying sparsity levels. By investigating on the projected gradient descent, we unveil the drawbacks of the existing DL methods with fixed depth. Then we propose an end-to-end trainable DL architecture, which involves an extra halting score at each layer. Therefore, the proposed method learns how many layers to execute to emit an output, and the network depth is dynamically adjusted for each task in the inference phase. We conduct experiments using both synthetic data and applications including random access in massive MTC and massive MIMO channel estimation, and the results demonstrate the improved efficiency for the proposed approach.