论文标题

整数分区的新订单

A new order on integer partitions

论文作者

Tétreault, Étienne

论文摘要

考虑到均匀对称函数的多元素的差异的学术积极性,我们引入了整数分区的新关系。这种关系被认为是部分秩序,其限制在一部分分区等同于经典的福克斯猜想。我们通过构建明确包含模块的特性,其字符对应于所考虑的散布。我们还证明,这些模块中不可约的数量是$ n $增长的一些稳定属性。

Considering Schur positivity of differences of plethysms of homogeneous symmetric functions, we introduce a new relation on integer partitions. This relation is conjectured to be a partial order, with its restriction to one part partitions equivalent to the classical Foulkes conjecture. We establish some of the properties of this relation via the construction of explicit inclusion of modules whose characters correspond to the plethysms considered. We also prove some stability properties for the number of irreducible occurring in these modules as $n$ grows.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源