论文标题
通过稀疏矩阵分解来识别纠缠的物理关系,以告知血浆融合设计
Identifying Entangled Physics Relationships through Sparse Matrix Decomposition to Inform Plasma Fusion Design
论文作者
论文摘要
通过惯性限制融合(ICF),可持续的燃烧平台一直是50多年来的持续挑战。缓解工程限制并改善当前设计涉及对物理过程的复杂耦合的理解。尽管复杂的模拟代码用于建模ICF内爆,但这些工具包含必要的数值近似,但错过了限制预测能力的物理过程。鉴定可控设计输入与ICF实验的关系与执行实验的可测量结果(例如产量,形状)之间的关系可以帮助指导实验的未来设计和模拟代码的开发,从而有可能提高用于模拟ICF实验的计算模型的准确性。我们使用稀疏矩阵分解方法来识别一些相关设计变量的簇。稀疏主成分分析(SPCA)确定了与变量(激光,hohlraum和Capsule)的物理起源相关的组。一个可变的重要性分析发现,除了变量与中子产量高度相关(例如纠察功率和激光能量)外,代表ICF设计的巨大变化(例如脉冲步骤数)的变量也非常重要。然后,获得的稀疏成分用于训练一个随机森林(RF)替代物来预测总产量。训练和测试数据上的RF性能与使用所有设计变量训练的RF替代物的性能进行了比较。这项工作旨在通过增强专家直觉和仿真结果来为未来的ICF实验的设计变化提供信息。
A sustainable burn platform through inertial confinement fusion (ICF) has been an ongoing challenge for over 50 years. Mitigating engineering limitations and improving the current design involves an understanding of the complex coupling of physical processes. While sophisticated simulations codes are used to model ICF implosions, these tools contain necessary numerical approximation but miss physical processes that limit predictive capability. Identification of relationships between controllable design inputs to ICF experiments and measurable outcomes (e.g. yield, shape) from performed experiments can help guide the future design of experiments and development of simulation codes, to potentially improve the accuracy of the computational models used to simulate ICF experiments. We use sparse matrix decomposition methods to identify clusters of a few related design variables. Sparse principal component analysis (SPCA) identifies groupings that are related to the physical origin of the variables (laser, hohlraum, and capsule). A variable importance analysis finds that in addition to variables highly correlated with neutron yield such as picket power and laser energy, variables that represent a dramatic change of the ICF design such as number of pulse steps are also very important. The obtained sparse components are then used to train a random forest (RF) surrogate for predicting total yield. The RF performance on the training and testing data compares with the performance of the RF surrogate trained using all design variables considered. This work is intended to inform design changes in future ICF experiments by augmenting the expert intuition and simulations results.