论文标题
efimov在kardar-parisi-zhang粗糙过渡的效果
Efimov effect at the Kardar-Parisi-Zhang roughening transition
论文作者
论文摘要
由Kardar-Parisi-Zhang(KPZ)方程的尺寸高于两个方程的表面生长经历了从光滑到粗糙相的粗糙过渡,而非线性的增加。还知道,可以将KPZ方程映射到具有接触相互作用的有吸引力的玻色子的量子力学上,其中粗糙的过渡对应于两个玻色子的结合过渡,并增加了吸引力。这种关键的玻色子在三个维度上实际上表现出Efimov效应,其中三个玻色子耦合在重新归一化组下发现与量表不变性相关。根据这些事实,将物理学的两个不同主体联系起来,我们预测,在三个维度上的KPZ粗糙过渡显示了离散尺度的不变性或没有内在量表不变性。
Surface growth governed by the Kardar-Parisi-Zhang (KPZ) equation in dimensions higher than two undergoes a roughening transition from smooth to rough phases with increasing the nonlinearity. It is also known that the KPZ equation can be mapped onto quantum mechanics of attractive bosons with a contact interaction, where the roughening transition corresponds to a binding transition of two bosons with increasing the attraction. Such critical bosons in three dimensions actually exhibit the Efimov effect, where a three-boson coupling turns out to be relevant under the renormalization group so as to break the scale invariance down to a discrete one. On the basis of these facts linking the two distinct subjects in physics, we predict that the KPZ roughening transition in three dimensions shows either the discrete scale invariance or no intrinsic scale invariance.