论文标题

在媒体上发现全球变暖的立场

Detecting Stance in Media on Global Warming

论文作者

Luo, Yiwei, Card, Dallas, Jurafsky, Dan

论文摘要

引用观点是一种有力但有研究的论证策略。例如,一个环保主义者可能会说:“领先的科学家同意,全球变暖是一个严重的关注点”,构建了一项条款,该条款肯定了自己的立场(“全球变暖是严重的”),作为一个可靠的来源(“ [[科学家]同意))的意见(“ [科学家]同意))(“领先”)。相比之下,全球变暖的丹尼尔可能与不信任来源的意见相同的条款构成了谓词的疑问:“错误的科学家声称[...]。”我们的工作研究在全球变暖(GW)辩论中进行了构图,这是一个越来越多的党派问题,在NLP中很少关注。我们介绍了全球变暖姿态数据集(GWSD),这是一个标记的GW句子的数据集,并培训了BERT分类器,以研究论证的新颖方面,以辩论的不同方面如何代表自己和彼此的观点。从56k新闻文章中,我们发现,在GW受到感受和怀疑的媒体中使用了类似的语言手段,用于自我互动和对手的话语,尽管GW难以置信的媒体表现出更多的对手怀疑。我们还发现,作者经常通过将作者自己的观点归因于已知的公开认可对立观点的源代码实体来将其描述为虚伪的。我们发布了框架设备的姿势数据集,模型和词典,以供将来的意见框架和自动检测GW立场的工作。

Citing opinions is a powerful yet understudied strategy in argumentation. For example, an environmental activist might say, "Leading scientists agree that global warming is a serious concern," framing a clause which affirms their own stance ("that global warming is serious") as an opinion endorsed ("[scientists] agree") by a reputable source ("leading"). In contrast, a global warming denier might frame the same clause as the opinion of an untrustworthy source with a predicate connoting doubt: "Mistaken scientists claim [...]." Our work studies opinion-framing in the global warming (GW) debate, an increasingly partisan issue that has received little attention in NLP. We introduce Global Warming Stance Dataset (GWSD), a dataset of stance-labeled GW sentences, and train a BERT classifier to study novel aspects of argumentation in how different sides of a debate represent their own and each other's opinions. From 56K news articles, we find that similar linguistic devices for self-affirming and opponent-doubting discourse are used across GW-accepting and skeptic media, though GW-skeptical media shows more opponent-doubt. We also find that authors often characterize sources as hypocritical, by ascribing opinions expressing the author's own view to source entities known to publicly endorse the opposing view. We release our stance dataset, model, and lexicons of framing devices for future work on opinion-framing and the automatic detection of GW stance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源