论文标题

从量子狂犬模型到Jaynes-Cummings模型:破坏对称的量子相变,拓扑相变和多政治性

From quantum Rabi model to Jaynes-Cummings model: symmetry-breaking quantum phase transitions, topological phase transitions and multicriticalities

论文作者

Ying, Zu-Jian

论文摘要

我们研究了连接基本QRM和Jaynes-Cummings模型(JCM)的各向异性量子兔模型(QRM)的基态(GS)和激发差距。虽然GS在低频限制下具有二阶量子相变(QPT),但打开有限频率,我们在相图上发出了新的灯光,以照亮一阶过渡系列的精细结构。我们发现QPT伴随着隐藏的对称性破坏,而新兴的系列过渡是拓扑过渡,而无需打破对称性。波函数的拓扑结构在桥接QRM和JCM时提供了一种新颖的普遍性分类。我们表明,传统上建立的三重点实际上是五重奏或六重点,并且遵循Penta-/hexa-Criticalition,出现了一系列的四焦点。

We study the ground state (GS) and excitation gap of anisotropic quantum Rabi model (QRM) which connects the fundamental QRM and the Jaynes-Cummings model (JCM). While the GS has a second-order quantum phase transition (QPT) in the low frequency limit, turning on finite frequencies we shed a novel light on the phase diagram to illuminate a fine structure of first-order transition series. We find the QPT is accompanied with a hidden symmetry breaking, whereas the emerging series transitions are topological transitions without symmetry breaking. The topological structure of the wave function provides a novel universality classification in bridging the QRM and the JCM. We show that the conventionally established triple point is actually a quintuple or sextuple point and following the penta-/hexa-criticality emerge a series of tetra-criticalities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源